

COMMITTED TO HELPING YOU GROW.

Concept Agri-Tek was started with a plan to bring new concepts to the farm. Through the years we achieved this by procuring high-quality fertilizers, biologicals, and macronutrients as well as recommending them through an agronomy-first approach.

We soon came to realize that some solutions to our customers' problems didn't yet exist. As a result, we decided to create our own proprietary products and technologies. These advanced agricultural products and technologies set us apart from our competitors and reflect our commitment to creating new innovations in soil and plant fertility.

I want to personally thank you for partnering with Concept Agri-Tek and for placing your trust in us. Best Regards,

Trey Curtis

Owner | President

CONCEPT

Concept Ag is founded as a distributor, focusing on nitrogen, phosphorus, potassium, and micronutrients

2010

Introduces Niro-Tek, a carbon based nitrogen

stabilizer technology.

● RESIDUERX*
Introduces Residue RX

M BIO-TEK"

Introduces Bio-Tek, a biological technology in a suspended state

Introduces Buncha
Bugs in liquid form.

2014

2012

FOLIAR RX

Develops proprietary, carbon-based product Foliar RX

BIOVATE°

Develops proprietary, carbon-based product Biovate.

ROOT-TEK

Develops the Root-Tek technology to improve root development. Biovate XP is born through the combination of Biovate and Root-Tek.

Introduces Buncha
Bugs in dry form,
increasing the number
of biological strains as
well as shelf life from 9
months to 3 years.

STRESS-TEK* Introduces Stress-Tek technology, increasing plant health and

echnology, increasing plant health and immunity to reduce stress on crops.

2018

ONUTRIHANCE

Introduces NutriHance, which enhances the availability of soil nutrients by reducing tie-up in the soil profile.

O BIO-AID

Launches Bio-Aid, Concept Agri-Tek's first EPA-certified fungicide

2020

OWASTEMASTER

Launches Wastemaster, a consortium of beneficial microbes with the ability to digest animal manure

2016

015

ICHABUGS ST es the biological reatment Buncha Bugs ST 2017

TransMaxx

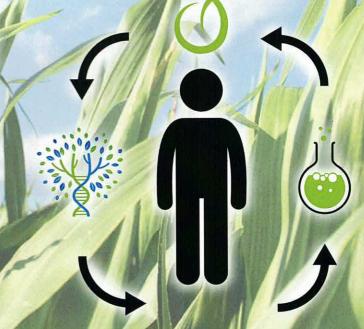
Introduces TransMaxx, an innovative translocation technology for foliar application of nutrients, including calcium; historically considered ineffective. 2019

PENE-TEK*

Introduces Pene-Tek, a soil penetration technology that increases biological activity in the soil

Concept Agri-Tek was started with a plan to bring new concepts to the farm.

Since inception, Concept Agri-Tek has leveraged its deep industry knowledge to develop an innovative and unmatched product portfolio that improves soil health, increases yields, and delivers a higher return on investment.


Understanding your soil is the key to a successful crop yield. As such, we combine the leading technology in agronomy, biology and chemistry to find the perfect solution for your soil and plant health. We pride ourselves on providing solutions

for your personalized fertility programming needs and delivering the components crucial to your crop's success.

Our mission is to deliver innovative concepts utilizing the latest technologies in agronomy, biology and chemistry to enhance soil and plant health. Our advanced agricultural products and technologies reflect that mission and set us apart from our competitors.

WE BELIEVE IN THE ABC'S OF **AGRICULTURE**

Concept Agri-Tek is centered on the customer. Using Agronomy, Biology, and Chemistry we create a complete program solution for farmers throughout the United States.

OVERVIEW OF OUR TECHNOLOGIES

Bio-Tek is a biological technology that delivers a large consortium of live biology, in a suspended state, that becomes active within minutes of initial soil contact.

PLANTING TECHNOLOGY

Our Root-Tek enhances early root growth by boosting the plant's hormones responsible for new below ground development.

PLANTING TECHNOLOGY

Nitro-Tek is an advanced nitrogen stabilization technology that increases nitrogen uptake while decreasing leaching and volatilization. This technology is natural and safe to soil biology and the handler.

FULL SEASON TECHNOLOGY

Pene-Tek is a soil penetration technology that reduces soil compaction, improves soil structure, increases water infiltration, and increases biological activity.

FULL SEASON TECHNOLOGY

STRESS-TEK®

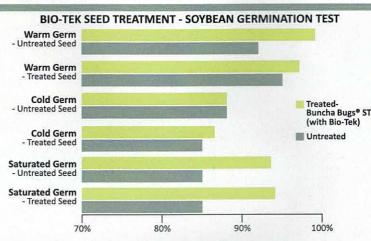
Our Stress-Tek technology reduces the negative impacts of stress that a crop is exposed to by boosting the plant's health and immune systems.

FOLIAR TECHNOLOGY

TransMaxx is a translocation technology for foliar feeding that allows for the systemic uptake of nutrients that have been difficult, to nearly impossible, to introduce into plants

OLIAR TECHNOLOGY

OSEED GUARD BIO


Give your seeds that EXTRA they need for maximum performance

Seed Guard Bio is a 4-in-1 product that gives you an inoculant, root stimulant, biology, and a microbial food source all in one. Our Bio-Tek technology also does something no other biological product has done; the microbial population on the seed actually increases after treatment, allowing you to treat your seed earlier.

- · Inoculant compatible with all seed types
- · Nitrogen fixating and Phosphorus mineralizing bacteria
- · Root stimulant Enzymes and Hormones
- · Microbial food source.

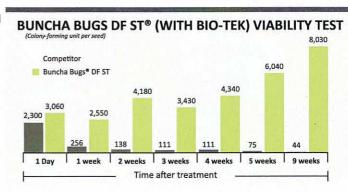
Seeds treated with Buncha Bugs® ST (with Bio-Tek) show strong germination in ideal conditions (warm germination) and significantly better germination in suboptimal conditions (cold and saturated cold germination)

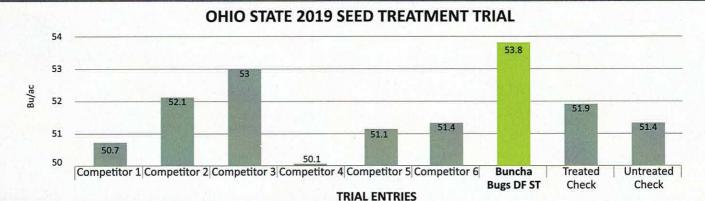
APPLICATION RATE

Seed Treatment Application: 4 fl. oz. per hundred weight of seed

OBUNCHA BUGS DF ST®

Maximum biology and inoculant in one


Buncha Bugs DF ST® is a biological seed treatment containing a natural consortium of beneficial soil microbes that specialize in releasing bound phosphorus, potassium, and other micronutrients.


Our Buncha Bugs DF ST® introduces a healthy colony of beneficial soil bacteria right on the seed. The microbes begin working as soon as they come in contact with the soil. This means more available nitrogen, phosphorus, potassium, and essential micronutrients in the seedbed with added benefits from the microbes like increased soil tilth, better percolation, and water retention.

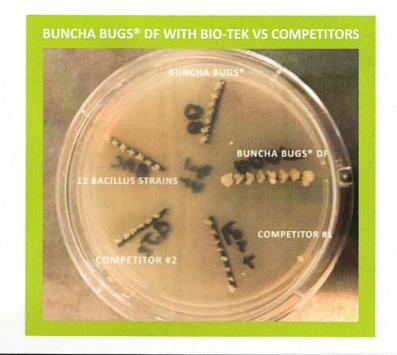
- . Increases available N, P, K, and micronutrients in the seedbed
- · Increases soil tilth, better percolation, and water retention
- Mixes readily with fungicides, insecticides, and even molybdenum
- Consistency of water—no special equipment or messy bladders—just mix and treat

APPLICATION RATE

Seed Treatment Application: .52 oz. per hundredweight of seed

OBUNCHA BUGS DF

Unlock your soil's true potential


BIO-TEK®

Using our proprietary Bio-Tek technology, Concept Agri-Tek has been able to formulate a large consortium of bacteria, fungi, protozoa, and bio-stimulants designed to enhance soil and plant health.

- Increases available N, P, K, and micronutrients in the soil
- · Increases soil tilth, percolation, and water retention
- · Increases biomass above and below ground level

APPLICATION RATE

Planter Application: 1 oz per acre Fertigation: 2 oz per acre

OBIOVATE® XP

The ultimate microbe food source

Biovate® XP is a specific blend of clean, powerful soil and plant stimulants not found in ordinary fertilizers. Biovate® XP provides a complex food source to boost microbial populations in the soil.

- · Aids in plant health during stressful situations.
- · Increases microbial activity by providing energy to developing plants
- · Pairs with Buncha Bugs DF® to increase microbial development and effectiveness
- · Promotes root growth and development

APPLICATION RATE

Planter Application: 16 fl. oz. per acre

Broadcast: 32 fl. oz. per acre Fertigation: 32 fl. oz. per acre

GUARANTEED ANALYSIS

Cobalt (Co): 0.01% Manganese (Mn): 0.05%

Derived from: Cobalt Sulfate, Manganese Sulfate

DIFFERENCE AFTER 7 DAYS WITH BIOVATE® Untreated Treated with OBiovate XP

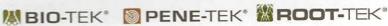
OBIORITE

A biological you can broadcast!

BioRite offers the BunchaBugs DF microbial blend along with the Root-Tek technology, a food source for microbes, and our new soil penetrant technology Pene-Tek.

- The Pene-Tek soil penetrant carries the microbes into the soil profile so they are not affected by ultraviolet light.
- · Can be broadcast with burndown or early herbicide application
- · Excellent results on all soils and crops
- Can aid in decreasing soil crusting

APPLICATION RATE


Broadcast: 32 fl. oz per acre

OBIORICE

Finally a biological for rice!

BioRice has a consortium of microbes that are not only able to withstand, but actually flourish, in flooded, non-oxygenated conditions. This allows the nutrients that become bound under a flood to release.

- The Pene-Tek soil penetrant carries the microbes into the soil profile so they are not affected by ultraviolet light.
- Can be broadcast with burndown or early herbicide application
- Helps next year's crop by having healthier soil after the flood

APPLICATION RATE

Broadcast: 32 fl. oz per acre

OBIORICE SOIL HEALTH TEST

Soil Test Controls	Treated Before Flood	Untreated Before Flood	Treated After Harvest	Untreated After Harvest
Orthophosphate	17.2 ppm	17.8 ppm	30.5 ppm	13.0 ppm
Phosphorous	17.0 ppm	16.0 ppm	35.0 ppm	15.0 ppm
Potassium	41.0 ppm	49.0 ppm	22.0 ppm	17.0 ppm
Calcium	418 ppm	285 ppm	481 ppm	247 ppm

9.5 bu Yield Increase

Three on-farm replications averaged a 9.5 bushel per acre advantage using Concept Agri-Tek's BioRice with Bio-Tek, Pene-Tek and Root-Tek Technologies.

O STARTER 20/20® PLUS

Unique raw ingredients for better plant absorption

M BIO-TEK®

Starter 20/20 Plus is derived from MKP/DKP which allows better plant uptake and crop safety. With the addition of Concept Plus, farmers know they are getting the maximum benefit out of their starter fertilizer.

- Ensures plant is getting a well-rounded start to producing yield by providing a good balance of phosphorus and potassium
- · Allows for optimum germination and emergence

APPLICATION RATE

Planter Application: 1-8 gal. per acre Broadcast Application: 1-12 gal. per acre

Note: For proper application rates suitable for your soil type, consult with a trained representative at Concept Agri-Tek.

GUARANTEED ANALYSIS

Nitrogen (N):0% Phosphorus (P₂O₂):20% Potassium(K,O):20%

Derived from: Monopotassium Phosphate, Dipotassium Phosphate

OTOTAL-PHOS® PLUS

Maximum phosphorus with nutrient releasing technology

Total-Phos Plus is a low salt starter fertilizer with our Bio-Tek technology added. The unique technology in Concept Plus makes nutrients more available for plant uptake, by breaking down organic material into molecules small enough for plants to absorb through their cell walls

- · Provides maximum phosphorus safely at planting
- · Encourages seedlings to develop more rapidly, increases water use efficiency, and promotes early plant formation and growth
- · Low-salt fertilizer

APPLICATION RATE

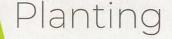
Planter Application: 1-8 gal. per acre Broadcast Application: 1-12 gal. per acre

Note: For proper application rates suitable for your soil type, consult with a

trained representative at Concept Agri-Tek.

GUARANTEED ANALYSIS

Nitrogen (N): 8% Phosphorus (P₂O₅):29%


Derived from: Ammonia, Urea, Phosphoric Acid, Potassium Hydroxide

In 2020, we used Fulvic Force to help with the kill off of our herbicide. I saw a big difference in our crops, plus it put carbon back into the soil.

the best we've ever had.

OMICRO-PAK®

Micronutrient package specifically formulated for early season nutrition

Micro-Pak is a specific blend of micronutrients that targets early plant vigor, nutrition, and health; formulated to be applied with pre-plant and at-planting applications.

- · Includes manganese that increases potassium uptake
- · Includes molybdenum that is vital for nitrogen fixation by rhizobia bacteria
- · Includes cobalt that assists in CO2 absorption

APPLICATION RATE

Planter Application: 32-64 fl. oz. per acre

Note: For proper application rates suitable for your soil type, consult with a trained representative at Concept Agri-Tek.

GUARANTEED ANALYSIS

Sulfur (S):	2%
Combined Sulfur (S):	2%
Cobalt (Co):	0005%
Manganese (Mn):	2%
Molybdenum (Mo):	0005%
Zinc (Zn):	2%

Derived from: Ammonium Thiosulfate, Cobalt EDTA, Manganese EDTA, Sodium Molybdate, Zinc EDTA

O CONCEPT-Z9

High quality EDTA chelated zinc

Concept-Z9 is an EDTA chelated 9% zinc product. Zinc is critical to early development and season long plant health.

- . Excellent choice for pre-plant and at-plant applications of zinc
- . Good mixability with other fertilizers and chemicals

APPLICATION RATE

Planter Application: 32 fl. oz. per acre

GUARANTEED ANALYSIS

Derived from: Zinc EDTA

O CONCEPT-MN

High quality EDTA chelated manganese

Concept Mn greatly aids in the photosynthetic process and serves as a stress mitigator in plants. Concept Mn performs best when applied at early growth stages.

- · Increases plant respiration and nitrogen assimilation
- · Can be applied at planting in furrow or foliar
- · Mixes well with most liquid products

APPLICATION RATE

Planter or Foliar Application: 16-32 fl. oz. per acre

GUARANTEED ANALYSIS

6%.....Water Soluble Manganese

Derived from: Manganese EDTA

OCALBOR

Finally a foliar calcium that works!

Using Concept Agri-Tek's TransMaxx technology, we have created a foliar product that effectively delivers a blend of calcium and boron into the tissues of the plant with unrivaled efficiency.

- Gets calcium and boron into the plant
- Increases water uptake and retention
- · Aids in pollination and retention of fruiting bodies

APPLICATION RATE

Foliar Application: 16-32 fl. oz. per acre

GUARANTEED ANALYSIS

Calcium (Ca):10% Boron (B):3%

Derived from: Calcium Carbonate, Boric Acid

THE EFFECT OF CALBOR ON SOYBEANS

SOUTHERN AG SERVICES | MANTEE, MS **2018 SOYBEANS**

UNTREATED

TREATED

\$97.20 per acre

- · The price of soybeans was calculated at \$9.75 per bushel
- . The cost of CALBOR was calculated using a 16 fl oz. application per acre
- . The cost of CALBOR was calculated at \$6.50 per acre

O FOLIAR 20/20

Systemic foliar phosphorus and potassium

Foliar 20/20 uses TransMaxx technology to drive phosphorus and potassium into the plant.

YIELD PER ACRE IN BUSHELS

- TransMaxx technology gets more P and K into the plant at lower usage rates
- · Allows for foliar correction to the plant when phosphorus is being tied up in the soil
- Gives a phosphorus boost at critical growth stages

APPLICATION RATE

Foliar Application: 16 fl. oz. per acre

GUARANTEED ANALYSIS

Nitrogen (N):0% Phosphorus (P₂O₅):20% Soluble Potash (K,O):20%

Derived from: Monopotassium Phosphate, Dipotassium Phosphate

FOLIAR 20/20 (WITH TRANSMAXX™) IMPACT ON COTTON

TREATED


UNTREATED

(Pounds Per Acre) 3.199

3,023

Incremental profit calculation based on:

- The price of cotton estimated at \$0.70 per pound
- The cost of Foliar 20/20 estimated at \$4.95 per pint applied at 16 oz. per acre

soybeans where I applied Concept Agri-Tek products versus where I hadn't. CalBor

advantage where K13 was applied as a side dress at 5 gallons per acre.

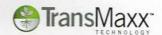
Systemic foliar calcium

Trans-Cal is a water-soluble foliar fertilizer that quickly provides calcium to plants to increase flower sets, reduce flower abortions, and increase fruit set. It helps bolster plant immunity and improve yields with improved root health. Trans-Cal can be used on row crops, field crops, vegetables, and many other crop types.

- · Promotes plant vigor and root health
- · Reduces flower abortion
- · Increases fruit set
- Provides a stronger immunity defense response
- · Keeps plants safe-won't burn crops even in direct contact

GUARANTEED ANALYSIS

Calcium (Ca):10%


Derived from: Calcium Carbonate

APPLICATION RATE

Foliar Application: 16-32 fl. oz. per acre

NUTRI-TEK

Systemic balanced micronutrient blend

Nutri-Tek uses TransMaxx™ technology to systematically move the nutrients through the plant. The product delivers seven micronutrients in a foliar application designed to boost early seedling development and provide essential nutrition ahead of reproductive pull.

- · Reduces plant stress
- · Moves throughout the entire plant—even the roots
- Immediately absorbs nutrients to make them available to the plant

APPLICATION RATE

Foliar Application: 16-32 fl. oz. per acre

GUARANTEED ANALYSIS

Nitrogen (N):	4%
Sulfur (S):	3%
Boron (B):	0.5%
Copper (Cu):	0.25%
Iron (Fe):	0.25%
Manganese (Mn):	3%
Molybdenum (Mo):	0.001%
Zinc (Zn):	3%

Derived from: Urea, Sodium Tetraborate, Manganese Sulfate, Zinc Sulfate, Copper Sulfate, Iron Sulfate, Sodium Molybdate

NUTRI-TEK (WITH TRANSMAXX™) IMPACT ON WHEAT

	Magnesium (Mg) (in % of dry material)	Sulfur (S) (in % of dry material)	Iron (Fe) (in parts per million)	Manganese (Mn) (in parts per million)	Boron (B) (in parts per million)	Copper (Cu) (in parts per million)	Zinc (Zn) (in parts per million)
Tissue Test Before Treatment	Sufficient 0.11	Low 0.19	Sufficient 84	Deficient 40	Deficient 4	Low 5	Low 21
Tissue Test After Treatment	Sufficient 0.16	Sufficient 0.28	High 100	Excessive 96	Sufficient 9	High 13	Excessive 62

OTRANS-ZN

A systemic foliar zinc

Trans-Zn is a unique systemic fertilizer that helps zinc to be absorbed more quickly and translocate throughout the entire plant. Zinc has limited mobility in plants and Trans-Zn helps resolve that issue.

- · Helps combat zinc deficiency issues
- Stores excess zinc in the xylem and phloem to be used when needed

APPLICATION RATE

Foliar Application: 16 fl. oz. per acre

GUARANTEED ANALYSIS

12%
5%

Derived from: Zinc Sulfate

THE TRANSMAXX™ DIFFERENCE - CORN FOLIAR TEST

Incremental Profit of \$9.50 per acre

The application of Trans-Zn, a
TransMaxx™ product designed to get
zinc into plants, resulted in a gain of 3.5
bushels per acre and 0.5 pound gain in
test weight

O FULVIC FORCE

Nature's Nano particle

Increases absorption and mobilization of herbicides, fungicides and foliar fertilizers. Fulvic particles also provide an unique health benefit to applied crops.

- · Increases plant health and nutrient uptake
- Decreases environmental stress
- Boosts plant energy throughout the growing season

APPLICATION RATE

Foliar Application: 6-20 fl oz. per acre

INGREDIENTS

Fulvic Acid Complex:8%

Concept Agri-Tek and their products have been a crucial part of our business. Not only do they have a line of products that promotes yield but they have a group of representatives that are unmatched in the industry! We are very happy with everything that they help us with and look forward not only to continuing our business with them, but growing. I stand behind their product line as well as their people!

O FOLIAR RX®

Plant food and micronutrients all in one

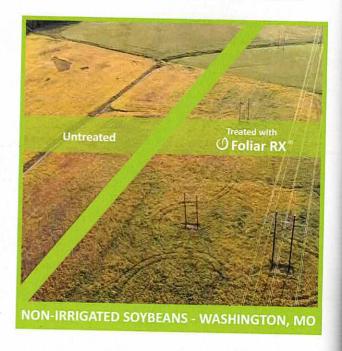
STRESS-TEK®

Our proven Foliar RX® product just got better! Foliar RX® has always helped with stress but now we have added Stress-Tek® to take it to a new level. Foliar RX® is a specific blend of fulvic acid, micronutrients, enzymes, and other plant and biological stimulants that assist in overall plant health.

- Increases plant health and nutrient uptake
- Decreases environmental stress
- Boosts plant energy throughout the growing season

APPLICATION RATE

Foliar Application: 32 fl oz. per acre


Note: For proper application rates suitable for your soil type, consult with a trained representative at Concept Agri-Tek.

GUARANTEED ANALYSIS

	_
Nitrogen (N):	20%
Potassium (K ₂ O):	1%
Juliul (3)	2%
Boron (B):	1 10/
ivianganese (Mn):	1%
ZINC (Zn):	1%
Derived from: Uron Dotassium III de 11	

Derived from: Urea, Potassium Hydroxide, Boric Acid,

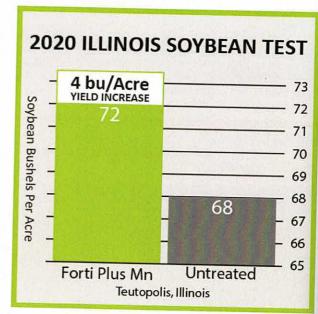
Manganese Sulfate, Zinc Sulfate

O FORTI PLUS MN

Maximize chlorophyll production and nodule retention

Forti Plus Mn provides the micronutrient Manganese (Mn). Manganese is essential in plant growth - affecting carbohydrate and nitrogen assimilation, chlorophyll production, and crop maturity.

Critical for plant growth and health


APPLICATION RATE

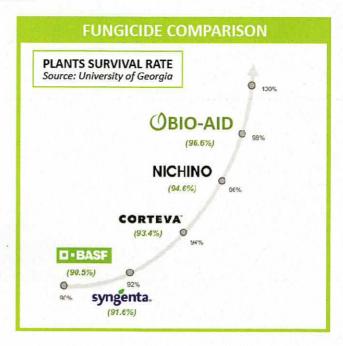
Foliar Application: 16 - 32 fl oz per acre

GUARANTEED ANALYSIS

Sulfur (S):	3%
3.0%	Combined Sulfur
Manganese (Mn)	5%
5.0%	Chelated Manganese

Derived from: Manganese EDTA; Chelating agents are citric acid and EDTA. EDTA is ethylenediaminetetra acetic acid

Concept Agri-Tek's first EPA-registered fungicide


Bio-Aid is a fungicide that delivers an initial contact kill, and suppresses and controls Phytophthora, Pythium and Downy Mildew.

- · Safe to the user and to the environment
- · Provides contact control of a wide range of fungal pests
- · Cost comparative at two applications versus popular commercial competitors

APPLICATION RATE

Foliar Application: 32 fl oz per acre

GUARANTEED ANALYSIS

ONUTRIHANCE

Unlock the nutrients in your soil

NutriHance is a nutrient enhancer designed to gently bond to nutrients increasing their availability to plants and decreasing their potential to leach from the root zone.

- Enhances availability of soil nutrients by reducing "tie up" in the soil profile
- · Reduces leaching of susceptible nutrients
- · Promotes greater plant uptake of nutrients on hand

APPLICATION RATE

Planting: 32 - 64 fl oz per acre Foliar: 32 - 64 fl oz per acre

GUARANTEED ANALYSIS

OCONCEPT-B10

Finally a boron you can count on!

STRESS-TEK®

Concept-B10 is a 10% boron. Boron is a highly overlooked micronutrient that is needed by all plants.

- Adequate late-season boron levels are essential for good test weight
- Necessary for nitrogen metabolism and protein formation

APPLICATION RATE

Foliar Application: 16-32 fl. oz. per acre Sidedress Application: 16-32 fl. oz. per acre

Note: Boron can be toxic to seedlings and plants if over-applied.

GUARANTEED ANALYSIS

Boron (B):10%

Derived from: Boric Acid

FORTI GREEN

The Iron solution for your plants

Forti Green is designed to provide supplemental Iron to crops in need. Forti Green is chelated to make mixing and plant uptake easier and more efficient.

- · Provides supplemental Iron to plants grown in low Iron soils
- · Aids in potassium uptake and transport within the plant

APPLICATION RATE

Foliar Application: 16 - 32 fl oz per acre

GUARANTEED ANALYSIS

Nitrogen (N):	.2%
Iron (Fe):4	.5%

Derived from: Iron HEDTA

OCONCEPT-N25B

Slow release nitrogen with boron to steadily feed your plant

Concept-N25B is a slow release nitrogen, with boron, specifically formulated to foliar feed plants for weeks. Stress-Tek technology has been added to increase stress tolerance of the plant as well.

- Excellent crop safety for low injury risk
- · Feeds crop for weeks
- · Boron to increase plant health

APPLICATION RATE

Foliar Application: 0.5-2 gal. per acre

Note: For proper application rates suitable for your soil type, consult with a trained representative at Concept Agri-Tek.

GUARANTEED ANALYSIS

Nitrogen (N):25%

Derived from: Urea-triazone and Boric Acid

Highest quality foliar potassium with Stress-Tek techonology

Concept Agri-Tek has made a great product even better. Now our Foliar K, which uses potassium acetate, has Stress-Tek technology added to help mitigate stress during the season.

- · Lower salt level for less crop injury
- Increases drought tolerance by providing the plant with proper potassium levels
- Helps protein synthesis by increasing the plants ability to convert nitrogen to protein

APPLICATION RATE

Foliar Application: 0.5-2 gal. per acre

Note: For proper application rates suitable for your soil type, consult with a trained representative at Concept Agri-Tek.

GUARANTEED ANALYSIS

 Nitrogen (N):
 0%

 Phosphorus (P):
 0%

 Potassium (K2O):
 24%

Derived from: Potassium Acetate

OTOTAL 10

Perfect balance of nitrogen and potassium

We use slow release nitrogen and potassium acetate to make a top of the line 10-0-10 foliar fertilizer; combined with our Stress-Tek to help mitigate environmental stresses.

- · Safe and highly effective
- · More efficient than common foliar fertilizers
- Balances the N, K ratio within the plant; aiding in protein synthesis

APPLICATION RATE

Foliar Application: 0.5-1 gal. per acre

GUARANTEED ANALYSIS

Nitrogen (N):	10%
Phosphorous (P):	0%
Soluble Potash (K ₂ O):	10%
Boron (B)	0.25%

Derived from: Urea, Urea-Trizone, Potassium Acetate, Boric Acid

O SWEET SUCCESS

Energize your plants and biology

Sweet Success is an excellent, clean energy source that aids in keeping plants healthy and vibrant. A blend of natural sugars to boost a plant's energy and brix levels. Higher brix equates to healthier plants and sweeter fruit.

- Increases brix levels in plants which can result in natural protection against leaf feeding insects
- Delivers a diverse sugar formulation to feed many types of microbes rather than a select few

APPLICATION RATE

Planter Application: 10-16 fl oz. per acre Foliar Application: 16-32 fl oz. per acre

Systemic infusion of brix boosting nutrients

Brix-Tek technology is a proprietary blend of brix boosting additives combined with TransMaxx™ technology. Brix-Tek is designed to provide a systemic infusion of brix boosting nutrients to increase the natural sugar production for crops such as sugar cane as well as increasing the overall health of the plant.

- · Increases a plant's natural sugar production
- · Provides a significant health boost for stress mitigation
- · Provides supplemental energy to plants

APPLICATION RATE

Foliar Application: 16-60 fl oz. per acre

THE BRIX-TEK DIFFERENCE - SUGAR CANE FOLIAR TEST **Pounds** 100 125 150 175 200 187 Treated Sugar/Ton 162 Untreated **Pounds** 8,000 6,000 7,000 3,000 4,000 5,000 Treated 7,487 Yield/lbs. of cane Untreated 6,478 Dollars 2,000 \$1,500 \$1,600 \$1,700 \$1,800 \$1,900 Treated \$1,947 **Gross Profit Incremental Profit of** Untreated \$1,684 \$243.00 per acre

CANE MAXX

Take your cane to the Maxx!

CaneMaxx Bio is a dual action biological product made exclusively for sugar cane. One part actively digests sugar cane residue for better shuck management and nutrient return. The second part targets new growth by stimulating root development and making soil nutrients more available to the plant.

- · Fixates nitrogen
- · Frees phosphorus, potassium, calcium, silica and other major and micronutrients necessary for a healthy crop

APPLICATION RATE

Broadcast Application: 32 oz per acre

GUARANTEED ANALYSIS

Total Nitrogen (N)......1% Available Phosphote (P2O5).....3% Derived from: urea, Phosphoric acid and Potassium hydroxide

ORESIDUE RX®

Reduce residue, release nutrition, remove pests.

Residue RX® is a consortium of bacteria and fungi that turn crop residue into organic matter. Along with breaking down crop residue, it also kickstarts the weathering processes for tied-up phosphorus in the soil.

- Breaks down field stubble for higher organic matter for the next growing season
- · Makes nitrogen and phosphorus more available to the plants
- · Breaks down the residue in which diseases over winter
- · Releases nutrients that are bound within crop residue
- · Blend of microbes and food source for faster breakdown

APPLICATION RATE

Broadcast Application: 16 fl oz. per acre

OSOIL REVIVE

Bring new life to unproductive soil

Soil Revive is a natural biological product that stimulates microbial activity and improves soil structure, bringing abused soils back to life. This allows for increased nutrient availability, water-holding capacity, and decreased hardpan.

- · Excellent for fields that have been graded or terraced
- Jumpstarts "new" ground where fertility levels are poor or unknown

APPLICATION RATE

Planting: In Furrow: 8 - 12 oz

Broadcast Application: 16-32 fl. oz. per acre

Time to mitigate salt issues!

Salt-X is a salt mitigation solution revolutionizing the battle against salt intrusion designed to mitigate salt concentrations in a variety of agricultural environments.

- Temporarily alters the properties of salt to allow it to percolate through the soil profile and exit the root zone
- · Helps rebuild soils that have had tons of commercial fertilizer applied.
- Reducing the salt pressure in the root zone along with increasing water and nutrient uptake for your crops

APPLICATION RATE

Broadcast Application: 1-4 gal. per acre

GUARANTEED ANALYSIS

Manganese (Mn)......0.05%

Derived from: Manganese Sulfate

OCONCEPT-S17

The sulfur source with Nitro-Tek technology

NITRO-TEK®

Concept-S17 now has Concept Agri-Tek's proprietary carbon-based nitrogen stabilizer, NitroTek®, added. Concept-S17 is specifically engineered to give the plants an excellent supply of sulfur, while increasing the efficiency of nitrogen uptake. Use with UAN, sidedress, or broadcast.

- No other nitrogen stabilizers needed
- Develops enzymes and vitamins
- Good source of high-quality sulfur

APPLICATION RATE

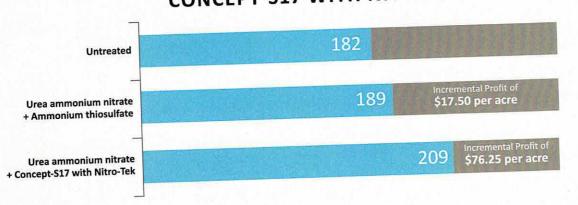
Can be used in all liquid nitrogen applications:

Rate per acre: 1-5 gallons

GUARANTEED ANALYSIS

Nitrogen (N):8%

Derived from: Ammonium Thiosulfate


CONCEPT-S17 VS NITROGEN STABILIZER

Dennis Simpson Farms - Owensville, IN Crop: Corn Year: 2019 (Yield in bushels per acre) Average Test 3 Test 2 Test 1 283.41 287.08 277.46 285.69 Concept-S17 265.57 278.85 Nitrogen 261.00 256.85 Stabilizer Bushel per acre increase 17.84 8.23 16.46 28.84 Difference

- Cost of Concept-S17 figured at \$5.49 per gallon. Rate 5 gallons per acre.
- Cost of nitrogen stabilizer figured at \$46 per gallon. Rate 32 oz per acre.
- Corn price figured at \$4.00 per bushel

rofit per acre using Concept-S17 \$55.41

CONCEPT-S17 WITH NITRO-TEK® - CORN TEST

- The price of corn was calculated at \$4.00 per bushel
- The cost of Concept-S17 was calculated at \$25.00 per acre
- The cost of ATS was calculated at \$8.70 per acre

OCONCEPT-K13

Economical, available potassium

Concept K-13 now gives you the ability to blend potassium with UAN, helping to balance the N to K ratio, which is important to the efficiency of both nutrients. Use in soil applications only.

- · Aids in strengthening plant stalks and stems
- Increases drought tolerance through proper potassium levels in plants
- Delivers potassium which is vital to photosynthesis

APPLICATION RATE

Planter Application: 2x2 or similar - 1-10 gal. per acre Sidedress or Y-Drop Application: 2-20 gal. per acre

Fertigation: 2-20 gal. per acre

GUARANTEED ANALYSIS

Soluble Potash (K₂O):13%

Derived from: Potassium Chloride

OTOTAL CAL

Introduce soluble calcium when and where you need it

Total Cal is a soil applied calcium that can help make your nitrogen program more efficient.

- · Plays a key role in balancing the calcium to nitrogen ratio within your soil
- Aids in balancing your nitrogen regimen
- A soluble form of calcium that can be readily taken up by the plant

APPLICATION RATE

Planter Application: 2x2 or similar - 1-2 gal. per acre Sidedress or Y-Drop Application: 1-4 gal. per acre

Fertigation: 1-4 gal. per acre

GUARANTEED ANALYSIS

Calcium (Ca):10%

Derived from: Calcium Chloride

Concept Agri-Tek has helped me diversify my business by offering new and exciting products. Pair that with great support and service, plus agronomic advice and they are a company with a very bright future.

Products and Tech are only as good as their PLACEMENT and TIMING.

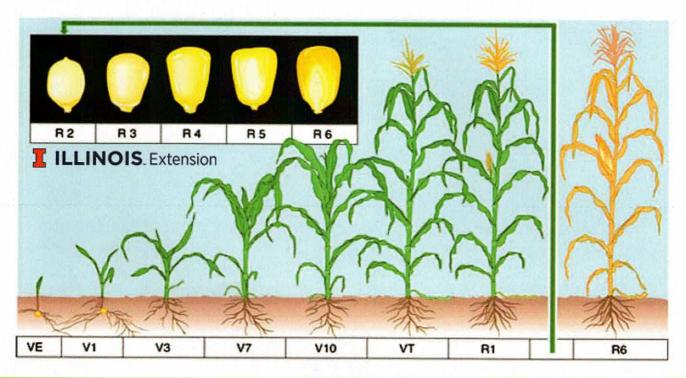
At Concept Agri-Tek, we do not just sell products.

WHAT WE OFFER:

CONSULTATION

By evaluating soil tests, we can develop a plan for exactly what your farm needs to succeed.

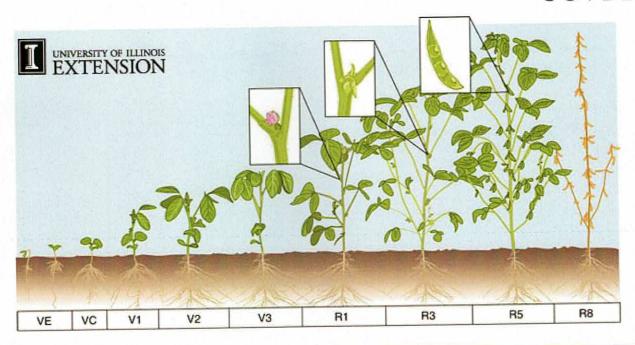
NEW INNOVATION


We are constantly working to create new products that change the market, and offer our partners the best and most advanced technology in their field.

YEAR-ROUND SUPPORT

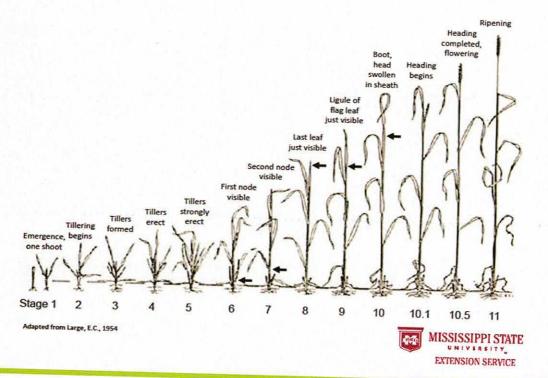
We work all year to help you make the right decisions. From choosing the right products to applying them at the right place and right time, we have you covered.

CORN


VE	Emergence
V1	One leaf with collar visible
V2	Two leaves with collars visible
V(n)	Leaves with collars visible
VT	Last branch of tassel is completely visible

R1	Silking - Silks visible outside the husks	
R2	Blister - kernals are white and resemble a blister shape	
R3	Milk - kernals are yellow on outside; milky inner fluid	
R4	Dough - milky inner fluid thickens to paste	
R5	Dent - nearly all kernals are denting	
R6	Physiological maturity - black abscission layer has formed	

PRE-PLANT	PLANTING		FOLIAR/SIDEDRESS			POST HARVEST	
Before Spring Tillage	Seedling/Planting In-Furrow	Seedling or Planting 2x2	Seedling - V3	V4-V8	VT-R3	Post-Harvest	
Soil Revive North of Benton, MO Residue RX®	Buncha Bugs DF® Biovate® XP Total Phos Plus® Concept-Z9 Micro Pak	Concept K13 Total Cal Concept B10 Concept S17	(Broadcast app, apply with herbicide) Fulvic Force Sweet Success® Nutri-Tek	Fulvic Force Nutri-Tek Trans -Zn Foliar 20/20 TransMaxx™ Sweet Success®	CalBor Foliar RX® Total 10 Foliar K® Fulvic Force Foliar 20/20 Transmaxx™	South of Benton, MO Residue RX®	

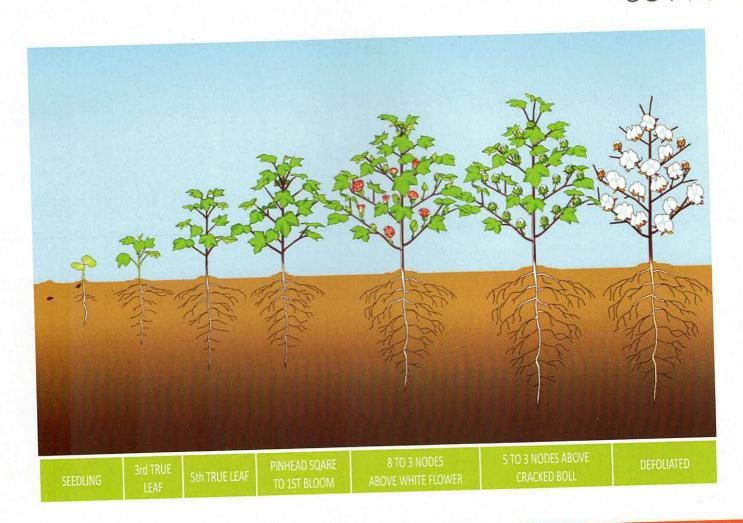

SOYBEANS

	VE	Emergence	S	R1	Beginning Flowering–plants have at least one flower on any node
TES	VC	Unrolled Unifoliolate Leaves—unfolding of the unifoliolate leaves	TATE	R2	Full Flowering—an open flower at one of the two uppermost nodes
/E STA	V1	First Trifoliolate—one set of unfolded trifoliolate	TIVE S	R3	Beginning Pod–pods are 3/16nch (5mm) at one of the four uppermost nodes
ETATIV	V2	Second Trifoliolate-two sets of unfolded trifoliolate leaves	ODOC	R5	Beginning Seed–seed is 1/8 inch (3mm) long in the pod at one of the four uppermost nodes on the main stem
VEG	V3	Third Trifoliolate—three unfolded trifoliolate leaves	REPR	R8	Maturity–95% of the pods have reached their full mature color
	V(n)	Nth Trifoliolate—V stages continue with the unfolding of trifoliolate leaves.			

PRE-PLANT	PLANTING		FOLIAR / S	POST HARVEST		
Before Spring Tillage	Seedling/Planting In-Furrow	3rd-5th Trifoliolate	V5-V10	R1-R4	R5-R6	Post-Harvest
Soil Revive	Buncha Bugs® DF/ST	Nutri-Tek	Nutri-Tek	CalBor	CalBor	Below MO Boothee
Salt X	Biovate® XP	Sweet Success®	Foliar K®	Foliar K®	Sweet Success®	Residue RX®
Fulvic Force	BioRITE	Fulvic Force ®	Foliar RX®	Total 10		1 1 1 1 1 1 1 1
Above MO Bootheel	Starter 20/20	Foliar RX®	Sweet Success®	Foliar RX®		
Residue RX®	Nutri-Tek		Fulvic Force ®	Sweet Success®		d.
			Foliar 20/20 Transmaxx	Fulvic Force		

WHEAT

1	Emergence	v 8	Flag Leaf Begins–the last leaf begins to
2	Beginning Tillering-tillers start to form	ATE	emerge from the whorl
3-4	Tillering–developing tillers prior to winter	6 ST	Flag Leaf Fully Formed–visible flag leaf ligule and full emergence from the whorl
5	Green Up–leaf sheaths grow strongly erect	10	Boot-head is fully developed; seen in swollen section of leaf sheath below the flag leaf
6		10.1	Heading Emergence-awns visible; heads emerge
7	Two Nodes-two nodes are visible above	10.5	Heading Complete-head is fully emerged
	the soil; rapid stem elongation	11	Ripening-grain matures


PRE-PLANT	PLANTING	PLANTING FOLIAR / SIDEDRESS						
Before Spring Tillage	Seedling/Planting In-Furrow	Feekes 2-5	Feekes 6-8	Flag Leaf - Heading	Grain Fill	Post-Harvest		
Soil Revive Salt X Fulvic Force Concept K13	Buncha Bugs® DF ST - WHEAT	Biovate® XP	Nutri-Tek Foliar RX® Sweet Success® Fulvic Force	CalBor Total 10 Foliar RX® Sweet Success® Fulvic Force Concept K-13* Total Cal*	Foliar RX® Sweet Success® Fulvic Force CalBor	Residue RX®		

 ^{*}with liquid N top dress

Crop Program

COTTON

PRE-PLANT	PLANTING	FOLIAR / SIDEDRESS								
Before Spring Tillage	Seedling/ Planting In-Furrow or 2x2	3rd–5th True Leaf	Side Dress with Nitrogen *also after 1st Bloom	Pinhead Square to 1st Bloom	8–3 Nodes Above White Flower	5-3 Nodes Above Cracked Boll				
	Buncha Bug DF/ST	Nutri-Tek	Concept-K13	CalBor	CalBor	Fulvic Force				
Soil Revive Salt X	Biovate XP	Foliar RX®	Total Cal	Total 10	Foliar RX®	with defoliant				
Fulvic Force	Micro Pak	Sweet Success®	Concept-S17	Foliar K [®]	Total 10	7.11				
Fulvic Force	Starter 20/20	Fulvic Force		Sweet Success®	Sweet Success®					
	BioRITE			Nutri-Tek	Fulvic Force	198				
	-			Foliar RX®						
				Fulvic Force						
				Foliar 20/20 Transmaxx						

RICE

PRE-PLANT	PLANTING	FOLIAR / SIDEDRESS						
Before Spring Tillage	Seedling/Planting In-Furrow	V3-Green Ring	Green Ring-Split Boot	Grain Fill				
Soil Revive	BioRice	Nutri-Tek	Foliar K®	CalBor				
Salt X		Foliar K®	Foliar RX®	Total 10				
		Fulvic Force	Total 10	Fulvic Force				
- Maria - 1			Fulvic Force					

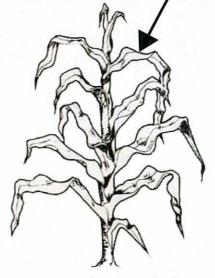
PLANT ANALYSIS

Tissue Sampling Guide

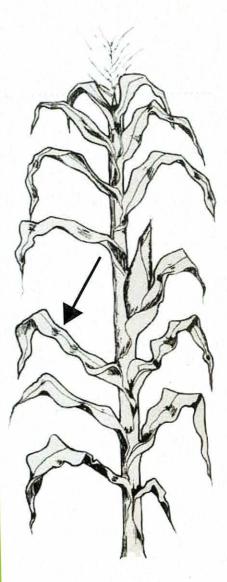
SOYBEANS & OTHER LEGUMES

6 inches to flowering

Submit recently mature trifoliate leaves prior to or during flowering.

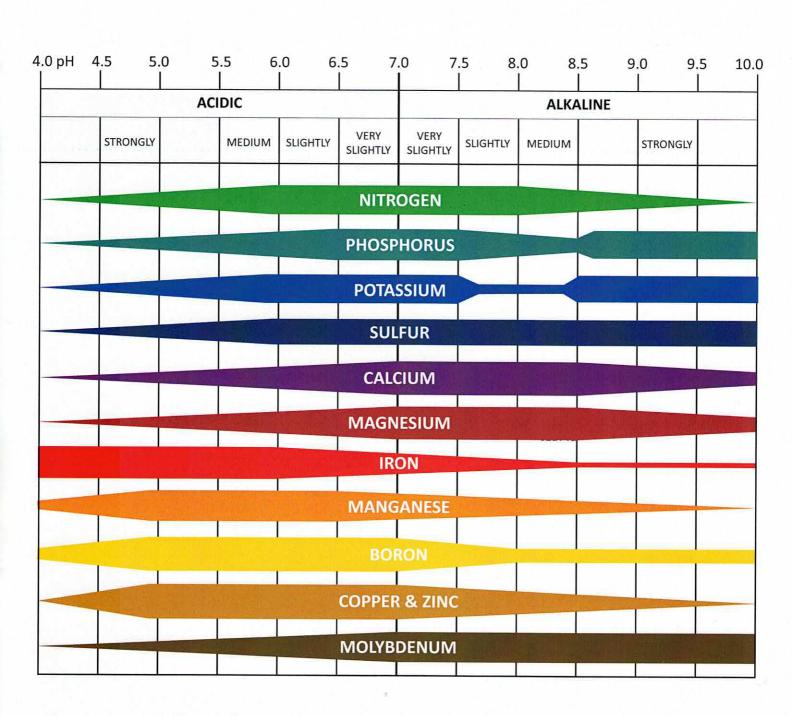

Sample 25 - 30 plants.

CORN


4 to 20 inches tall

Cut stalk off about 1/2" above ground level. Submit 20-25 whole plants.

Over 20 inches but prior to tasseling


Submit first fully developed leaf from top (first leaf below whorl). Cut leaf at its base where it joins sheath. Sample at least 20-25 plants.

Tasseling to pollination

Submit leaf below and opposite ear. Cut leaf at its base where it joins sheath. Sample at least 20 - 25 plants.

Nutrient Availability based on pH

Concept Agri-Tek

Nutrient Roles Chart

						150	
Vi Ph	10	1/3/2	nesium (Als	S	8	C	1
Nitrogen (N)	Sohor	Assium (A)	esiun	Calconur(s)	Cinu (Ca)	Oron (A)	oper
The state of the s	Osphorus (A	6) "H	Me	3	(cs)	(8)	1
						Y	
Nodulation/Nitrogen Use	Y		· ·	V		Cambarat.	
Photosynthesis	Υ		Υ	Υ	Υ		2545.50
Disease Resistance			Υ		Υ	Υ	
Abiotic Stress Tolerance			Υ			Υ	
Carbohydrate Production		Υ	Υ	Υ			
Protein Production	Υ			Υ	Υ		
Oil Production				Υ	Υ		
Vegetative Growth	Y	Y	Y	Υ	Υ	Y	
Hormone Metabolism				Υ			
Root Growth		Y				Υ	
Energy Transfer		Y		Υ	Υ		
Nutrient Uptake		Υ	Υ	Υ			
Water Usage			Y			Υ	

1	1	V.	Nano	Moly	S		. Se/s	So		
(A)	n (Ke) th	Nic (An)	Mange (Ni)	Mossos anese (Mr.)	Jenun (A)	SI SI (CO)	ijicon (si)	Sod Sod Sol	inn (Na)	
		Y		Υ			Υ			
	Υ	Υ	Υ		Υ			Υ	Υ	
	Υ	Υ			Υ			Υ	Υ	
		Υ	Υ		Υ	Υ				
					Υ					
			Υ			Y		-		
I	Υ		Υ		Υ	Υ	Υ			
			Υ			Υ	^			
		Y								
	Y									
	Υ									Υ

1300 Plant Road, Charleston, MO 63834 888.638.9984 + info@conceptag.com www.conceptagri-tek.com

- @conceptagritek
- @conceptagritek
- © @conceptagritek
- @conceptagritek